Anandamide inhibits transport-related oxygen consumption in the loop of Henle by activating CB1 receptors.
نویسندگان
چکیده
The energy required for active Na chloride reabsorption in the thick ascending limb (TAL) depends on oxygen consumption and oxidative phosphorylation (OXP). In other cells, Na transport is inhibited by the endogenous cannabinoid anandamide through the activation of the cannabinoid receptors (CB) type 1 and 2. However, it is unclear whether anandamide alters TAL transport and the mechanisms that could be involved. We hypothesized that anandamide inhibits TAL transport via activation of CB1 receptors and NO. For this, we measured oxygen consumption (Q(O(2))) in TAL suspensions to monitor the anandamide effects on transport and OXP. Anandamide reduced Q(O(2)) in a concentration-dependent manner. During Na-K-2Cl cotransport and Na/H exchange inhibition, anandamide did not inhibit TAL Q(O(2)). To test the role of the cannabinoid receptors, we used specific agonists and antagonists of CB1 and CB2 receptors. The CB1-selective agonist WIN55212-2 reduced Q(O(2)) in a concentration-dependent manner. Also, the CB1 receptor antagonist rimonabant blocked the effect of anandamide on Q(O(2)). In contrast, the CB2-selective agonist JHW-133 had no effect on Q(O(2)), while the CB2 receptor antagonist AM-630 failed to block the anandamide effects on Q(O(2)). To confirm these results, we measured CB1 and CB2 receptor expression and only CB1 expression was detected. Because CB1 receptors are strong nitric oxide synthase (NOS) stimulators and NO inhibits transport in TALs, we evaluated the role of NO. Anandamide stimulated NO production and the NOS inhibitor N(G)-nitro-L-arginine methyl ester blocked the anandamide effects on Q(O(2)). We conclude that anandamide inhibits TAL Na transport-related Q(O(2)) via activation of CB1 receptor and NOS.
منابع مشابه
بررسی اثر سیستم کانابینوییدی اندوژن بر عملکرد عصبی بافت کورپوس کاورنوزوم دستگاه تناسلی خارجی موشهای صحرایی نر
Background & Aim: Although studies have shown the central effects of Endocannabinoid on erection, its' peripheral effect is unknown. The purpose of this study was to investigate the effect of the endogenous cannabinoid anandamide on the nonadrenergic noncholinergic(NANC) relaxant responses to electrical field stimulation in isolated rat corpus cavernosum, a crucial tissue in erectile functi...
متن کاملThe endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines.
The effect of anandamide, an endogenous ligand for central (CB1) and peripheral (CB2) cannabinoid receptors, was investigated on the growth of the murine IL-6-dependent lymphoid cell line B9 and the murine IL-3-dependent myeloblastic cell line FDC-P1. In conditions of low serum level, anandamide potentiated the growth of both cytokine-dependent cell lines. Comparison with other fatty acid canna...
متن کاملCannabinoid antagonist SR-141716 inhibits endotoxic hypotension by a cardiac mechanism not involving CB1 or CB2 receptors.
Endocannabinoids and CB1 receptors have been implicated in endotoxin (LPS)-induced hypotension: LPS stimulates the synthesis of anandamide in macrophages, and the CB1 antagonist SR-141716 inhibits the hypotension induced by treatment of rats with LPS or LPS-treated macrophages. Recent evidence indicates the existence of cannabinoid receptors distinct from CB1 or CB2 that are inhibited by SR-141...
متن کاملThe endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.
The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of...
متن کاملPurinoceptor regulation of renal tubular transport is coming of age.
THE KIDNEY PLAYS a central role in regulating blood pressure, body fluid volume, body fluid composition, and electrolyte and water balance. Generations of effort have gone into understanding the tubular and vascular interactions that confer incredible fidelity in accomplishing these essential functions. While P2 purinergic signaling systems were investigated in other organ systems for some time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 304 4 شماره
صفحات -
تاریخ انتشار 2013